Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLOS Glob Public Health ; 3(5): e0001073, 2023.
Article in English | MEDLINE | ID: covidwho-2323816

ABSTRACT

There are limited published data within sub-Saharan Africa describing hospital pathways of COVID-19 patients hospitalized. These data are crucial for the parameterisation of epidemiological and cost models, and for planning purposes for the region. We evaluated COVID-19 hospital admissions from the South African national hospital surveillance system (DATCOV) during the first three COVID-19 waves between May 2020 and August 2021. We describe probabilities and admission into intensive care units (ICU), mechanical ventilation, death, and lengths of stay (LOS) in non-ICU and ICU care in public and private sectors. A log-binomial model was used to quantify mortality risk, ICU treatment and mechanical ventilation between time periods, adjusting for age, sex, comorbidity, health sector and province. There were 342,700 COVID-19-related hospital admissions during the study period. Risk of ICU admission was 16% lower during wave periods (adjusted risk ratio (aRR) 0.84 [0.82-0.86]) compared to between-wave periods. Mechanical ventilation was more likely during a wave overall (aRR 1.18 [1.13-1.23]), but patterns between waves were inconsistent, while mortality risk in non-ICU and ICU were 39% (aRR 1.39 [1.35-1.43]) and 31% (aRR 1.31 [1.27-1.36]) higher during a wave, compared to between-wave periods, respectively. If patients had had the same probability of death during waves vs between-wave periods, we estimated approximately 24% [19%-30%] of deaths (19,600 [15,200-24,000]) would not have occurred over the study period. LOS differed by age (older patients stayed longer), ward type (ICU stays were longer than non-ICU) and death/recovery outcome (time to death was shorter in non-ICU); however, LOS remained similar between time periods. Healthcare capacity constraints as inferred by wave period have a large impact on in-hospital mortality. It is crucial for modelling health systems strain and budgets to consider how input parameters related to hospitalisation change during and between waves, especially in settings with severely constrained resources.

2.
PLOS Glob Public Health ; 3(4): e0001070, 2023.
Article in English | MEDLINE | ID: covidwho-2303774

ABSTRACT

In March 2020 the South African COVID-19 Modelling Consortium was formed to support government planning for COVID-19 cases and related healthcare. Models were developed jointly by local disease modelling groups to estimate cases, resource needs and deaths due to COVID-19. The National COVID-19 Epi Model (NCEM) while initially developed as a deterministic compartmental model of SARS-Cov-2 transmission in the nine provinces of South Africa, was adapted several times over the course of the first wave of infection in response to emerging local data and changing needs of government. By the end of the first wave, the NCEM had developed into a stochastic, spatially-explicit compartmental transmission model to estimate the total and reported incidence of COVID-19 across the 52 districts of South Africa. The model adopted a generalised Susceptible-Exposed-Infectious-Removed structure that accounted for the clinical profile of SARS-COV-2 (asymptomatic, mild, severe and critical cases) and avenues of treatment access (outpatient, and hospitalisation in non-ICU and ICU wards). Between end-March and early September 2020, the model was updated 11 times with four key releases to generate new sets of projections and scenario analyses to be shared with planners in the national and provincial Departments of Health, the National Treasury and other partners. Updates to model structure included finer spatial granularity, limited access to treatment, and the inclusion of behavioural heterogeneity in relation to the adoption of Public Health and Social Measures. These updates were made in response to local data and knowledge and the changing needs of the planners. The NCEM attempted to incorporate a high level of local data to contextualise the model appropriately to address South Africa's population and health system characteristics that played a vital role in producing and updating estimates of resource needs, demonstrating the importance of harnessing and developing local modelling capacity.

3.
PLOS global public health ; 2(5), 2022.
Article in English | EuropePMC | ID: covidwho-2254805

ABSTRACT

Countries around the world have implemented restrictions on mobility, especially cross-border travel to reduce or prevent SARS-CoV-2 community transmission. Rapid antigen testing (Ag-RDT), with on-site administration and rapid turnaround time may provide a valuable screening measure to ease cross-border travel while minimizing risk of local transmission. To maximize impact, we developed an optimal Ag-RDT screening algorithm for cross-border entry. Using a previously developed mathematical model, we determined the daily number of imported COVID-19 cases that would generate no more than a relative 1% increase in cases over one month for different effective reproductive numbers (Rt) and COVID-19 prevalence within the recipient country. We then developed an algorithm—for differing levels of Rt, arrivals per day, mode of travel, and SARS-CoV-2 prevalence amongst travelers—to determine the minimum proportion of people that would need Ag-RDT testing at border crossings to ensure no greater than the relative 1% community spread increase. When daily international arrivals and/or COVID-19 prevalence amongst arrivals increases, the proportion of arrivals required to test using Ag-RDT increases. At very high numbers of international arrivals/COVID-19 prevalence, Ag-RDT testing is not sufficient to prevent increased community spread, especially when recipient country prevalence and Rt are low. In these cases, Ag-RDT screening would need to be supplemented with other measures to prevent an increase in community transmission. An efficient Ag-RDT algorithm for SARS-CoV-2 testing depends strongly on the epidemic status within the recipient country, volume of travel, proportion of land and air arrivals, test sensitivity, and COVID-19 prevalence among travelers.

4.
Clin Infect Dis ; 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2262043

ABSTRACT

BACKGROUND: Increasing the availability of antigen rapid diagnostic tests (Ag-RDTs) in low- and middle-income countries (LMICs) is key to alleviating global SARS-CoV-2 testing inequity (median testing rate in December 2021-March 2022 when the Omicron variant was spreading in multiple countries; high-income countries = 600 tests/100,000 people/day; LMICs = 14 tests/100,000 people/day). However, target testing levels and effectiveness of asymptomatic community screening to impact SARS-CoV-2 transmission in LMICs are unclear. METHODS: We used PATAT, an LMIC-focused agent-based model to simulate COVID-19 epidemics, varying the amount of Ag-RDTs available for symptomatic testing at healthcare facilities and asymptomatic community testing in different social settings. We assumed that testing was a function of access to healthcare facilities and availability of Ag-RDTs. We explicitly modelled symptomatic testing demand from non-SARS-CoV-2 infected individuals and measured impact based on the number of infections averted due to test-and-isolate. RESULTS: Testing symptomatic individuals yields greater benefits than any asymptomatic community testing strategy until most symptomatic individuals who sought testing have been tested. Meeting symptomatic testing demand likely requires at least 200-400 tests/100,000 people/day on average as symptomatic testing demand is highly influenced by non-SARS-CoV-2 infected individuals. After symptomatic testing demand is satisfied, excess tests to proactively screen for asymptomatic infections among household members yields the largest additional infections averted. CONCLUSIONS: Testing strategies aimed at reducing transmission should prioritize symptomatic testing and incentivizing test-positive individuals to adhere to isolation to maximize effectiveness.

5.
Geogr Anal ; 2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-2245566

ABSTRACT

Reproducible research becomes even more imperative as we build the evidence base on SARS-CoV-2 epidemiology, diagnosis, prevention, and treatment. In his study, Paez assessed the reproducibility of COVID-19 research during the pandemic, using a case study of population density. He found that most articles that assess the relationship of population density and COVID-19 outcomes do not publicly share data and code, except for a few, including our paper, which he stated "illustrates the importance of good reproducibility practices". Paez recreated our analysis using our code and data from the perspective of spatial analysis, and his new model came to a different conclusion. The disparity between our and Paez's findings, as well as other existing literature on the topic, give greater impetus to the need for further research. As there has been near exponential growth of COVID-19 research across a wide range of scientific disciplines, reproducible science is a vital component to produce reliable, rigorous, and robust evidence on COVID-19, which will be essential to inform clinical practice and policy in order to effectively eliminate the pandemic.

6.
Nat Genet ; 55(1): 26-33, 2023 01.
Article in English | MEDLINE | ID: covidwho-2185946

ABSTRACT

The first step in SARS-CoV-2 genomic surveillance is testing to identify people who are infected. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (mean = 27 tests per 100,000 people per day). We simulated COVID-19 epidemics in a prototypical low- and middle-income country to investigate how testing rates, sampling strategies and sequencing proportions jointly impact surveillance outcomes, and showed that low testing rates and spatiotemporal biases delay time to detection of new variants by weeks to months and can lead to unreliable estimates of variant prevalence, even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of approximately 100 tests per 100,000 people per day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Genomics , Diagnostic Techniques and Procedures , COVID-19 Testing
7.
Immunity ; 55(9): 1725-1731.e4, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2036138

ABSTRACT

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants of concern (VOCs) in a set of sera from patients infected with viral sequence-confirmed VOCs. Infections with D614G or Alpha strains induced the broadest immunity, whereas individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 were antigenically most distinct from D614G, associated with immune escape, and possibly will require vaccine updates to ensure vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral/genetics , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
8.
PLOS Glob Public Health ; 2(5): e0000086, 2022.
Article in English | MEDLINE | ID: covidwho-1902604

ABSTRACT

Countries around the world have implemented restrictions on mobility, especially cross-border travel to reduce or prevent SARS-CoV-2 community transmission. Rapid antigen testing (Ag-RDT), with on-site administration and rapid turnaround time may provide a valuable screening measure to ease cross-border travel while minimizing risk of local transmission. To maximize impact, we developed an optimal Ag-RDT screening algorithm for cross-border entry. Using a previously developed mathematical model, we determined the daily number of imported COVID-19 cases that would generate no more than a relative 1% increase in cases over one month for different effective reproductive numbers (Rt) and COVID-19 prevalence within the recipient country. We then developed an algorithm-for differing levels of Rt, arrivals per day, mode of travel, and SARS-CoV-2 prevalence amongst travelers-to determine the minimum proportion of people that would need Ag-RDT testing at border crossings to ensure no greater than the relative 1% community spread increase. When daily international arrivals and/or COVID-19 prevalence amongst arrivals increases, the proportion of arrivals required to test using Ag-RDT increases. At very high numbers of international arrivals/COVID-19 prevalence, Ag-RDT testing is not sufficient to prevent increased community spread, especially when recipient country prevalence and Rt are low. In these cases, Ag-RDT screening would need to be supplemented with other measures to prevent an increase in community transmission. An efficient Ag-RDT algorithm for SARS-CoV-2 testing depends strongly on the epidemic status within the recipient country, volume of travel, proportion of land and air arrivals, test sensitivity, and COVID-19 prevalence among travelers.

9.
Gates Open Research ; 2021.
Article in English | ProQuest Central | ID: covidwho-1835886

ABSTRACT

Background: Mathematical models have been used throughout the COVID-19 pandemic to inform policymaking decisions. The COVID-19 Multi-Model Comparison Collaboration (CMCC) was established to provide country governments, particularly low- and middle-income countries (LMICs), and other model users with an overview of the aims, capabilities and limits of the main multi-country COVID-19 models to optimise their usefulness in the COVID-19 response. Methods: Seven models were identified that satisfied the inclusion criteria for the model comparison and had creators that were willing to participate in this analysis. A questionnaire, extraction tables and interview structure were developed to be used for each model, these tools had the aim of capturing the model characteristics deemed of greatest importance based on discussions with the Policy Group. The questionnaires were first completed by the CMCC Technical group using publicly available information, before further clarification and verification was obtained during interviews with the model developers. The fitness-for-purpose flow chart for assessing the appropriateness for use of different COVID-19 models was developed jointly by the CMCC Technical Group and Policy Group. Results: A flow chart of key questions to assess the fitness-for-purpose of commonly used COVID-19 epidemiological models was developed, with focus placed on their use in LMICs. Furthermore, each model was summarised with a description of the main characteristics, as well as the level of engagement and expertise required to use or adapt these models to LMIC settings. Conclusions: This work formalises a process for engagement with models, which is often done on an ad-hoc basis, with recommendations for both policymakers and model developers and should improve modelling use in policy decision making.

10.
Geographical analysis ; 2021.
Article in English | EuropePMC | ID: covidwho-1564886

ABSTRACT

Reproducible research becomes even more imperative as we build the evidence base on SARS‐CoV‐2 epidemiology, diagnosis, prevention, and treatment. In his study, Paez assessed the reproducibility of COVID‐19 research during the pandemic, using a case study of population density. He found that most articles that assess the relationship of population density and COVID‐19 outcomes do not publicly share data and code, except for a few, including our paper, which he stated “illustrates the importance of good reproducibility practices”. Paez recreated our analysis using our code and data from the perspective of spatial analysis, and his new model came to a different conclusion. The disparity between our and Paez’s findings, as well as other existing literature on the topic, give greater impetus to the need for further research. As there has been near exponential growth of COVID‐19 research across a wide range of scientific disciplines, reproducible science is a vital component to produce reliable, rigorous, and robust evidence on COVID‐19, which will be essential to inform clinical practice and policy in order to effectively eliminate the pandemic.

11.
J Int AIDS Soc ; 24 Suppl 6: e25808, 2021 10.
Article in English | MEDLINE | ID: covidwho-1487487

ABSTRACT

INTRODUCTION: Differentiated service delivery (DSD) models aim to improve the access of human immunodeficiency virus treatment on clients and reduce requirements for facility visits by extending dispensing intervals. With the advent of the COVID-19 pandemic, minimising client contact with healthcare facilities and other clients, while maintaining treatment continuity and avoiding loss to care, has become more urgent, resulting in efforts to increase DSD uptake. We assessed the extent to which DSD coverage and antiretroviral treatment (ART) dispensing intervals have changed during the COVID-19 pandemic in Zambia. METHODS: We used client data from Zambia's electronic medical record system (SmartCare) for 737 health facilities, representing about three-fourths of all ART clients nationally. We compared the numbers and proportional distributions of clients enrolled in DSD models in the 6 months before and 6 months after the first case of COVID-19 was diagnosed in Zambia in March 2020. Segmented linear regression was used to determine whether the outbreak of COVID-19 in Zambia further accelerated the increase in DSD scale-up. RESULTS AND DISCUSSION: Between September 2019 and August 2020, 181,317 clients aged 15 or older (81,520 and 99,797 from 1 September 2019 to 1 March 2020 and from 1 March to 31 August 2020, respectively) enrolled in DSD models in Zambia. Overall participation in all DSD models increased over the study period, but uptake varied by model. The rate of acceleration increased in the second period for home ART delivery (152%), ≤ 2-month fast-track (143%) and 3-month MMD (139%). There was a significant reduction in the enrolment rates for 4- to 6-month fast-track (-28%) and "other" models (-19%). CONCLUSIONS: Participation in DSD models for stable ART clients in Zambia increased after the advent of COVID-19, but dispensing intervals diminished. Eliminating obstacles to longer dispensing intervals, including those related to supply chain management, should be prioritized to achieve the expected benefits of DSD models and minimize COVID-19 risk.


Subject(s)
Anti-HIV Agents , COVID-19 , HIV Infections , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Interrupted Time Series Analysis , Pandemics , SARS-CoV-2 , Zambia/epidemiology
12.
Clin Infect Dis ; 72(9): 1642-1644, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216617

ABSTRACT

Countries such as South Africa have limited intensive care unit (ICU) capacity to handle the expected number of patients with COVID-19 requiring ICU care. Remdesivir can prevent deaths in countries such as South Africa by decreasing the number of days people spend in ICU, therefore freeing up ICU bed capacity.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Humans , Intensive Care Units , SARS-CoV-2 , South Africa/epidemiology
13.
PLoS One ; 16(4): e0249271, 2021.
Article in English | MEDLINE | ID: covidwho-1197370

ABSTRACT

The basic reproductive number (R0) is a function of contact rates among individuals, transmission probability, and duration of infectiousness. We sought to determine the association between population density and R0 of SARS-CoV-2 across U.S. counties. We conducted a cross-sectional analysis using linear mixed models with random intercept and fixed slopes to assess the association of population density and R0, and controlled for state-level effects using random intercepts. We also assessed whether the association was differential across county-level main mode of transportation percentage as a proxy for transportation accessibility, and adjusted for median household income. The median R0 among the United States counties was 1.66 (IQR: 1.35-2.11). A population density threshold of 22 people/km2 was needed to sustain an outbreak. Counties with greater population density have greater rates of transmission of SARS-CoV-2, likely due to increased contact rates in areas with greater density. An increase in one unit of log population density increased R0 by 0.16 (95% CI: 0.13 to 0.19). This association remained when adjusted for main mode of transportation and household income. The effect of population density on R0 was not modified by transportation mode. Our findings suggest that dense areas increase contact rates necessary for disease transmission. SARS-CoV-2 R0 estimates need to consider this geographic variability for proper planning and resource allocation, particularly as epidemics newly emerge and old outbreaks resurge.


Subject(s)
COVID-19/epidemiology , Basic Reproduction Number , COVID-19/metabolism , COVID-19/transmission , Cross-Sectional Studies , Humans , Models, Statistical , Pandemics , Population Density , SARS-CoV-2/isolation & purification , United States/epidemiology
14.
Med (N Y) ; 2(4): 384-394, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1104159

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has resulted in a concomitant deluge of medical, biological, and epidemiologic research. Clinicians are interested in incorporating the best new evidence-based practices when treating individuals with COVID-19 and instituting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission prevention protocols. However, without sufficient background knowledge, evaluating epidemiologic studies can be challenging, and failure to identify sources of bias could lead to poor treatment decisions. Here we provide a brief primer on key concepts and terms related to COVID-19 epidemiology to provide clinicians with a starting point for evaluating the emerging COVID-19 literature.


Subject(s)
COVID-19 , Humans , Pandemics/prevention & control , SARS-CoV-2
15.
Open Forum Infect Dis ; 8(3): ofab040, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1057871

ABSTRACT

BACKGROUND: Dexamethasone and remdesivir have the potential to reduce coronavirus disease 2019 (COVID)-related mortality or recovery time, but their cost-effectiveness in countries with limited intensive care resources is unknown. METHODS: We projected intensive care unit (ICU) needs and capacity from August 2020 to January 2021 using the South African National COVID-19 Epi Model. We assessed the cost-effectiveness of (1) administration of dexamethasone to ventilated patients and remdesivir to nonventilated patients, (2) dexamethasone alone to both nonventilated and ventilated patients, (3) remdesivir to nonventilated patients only, and (4) dexamethasone to ventilated patients only, all relative to a scenario of standard care. We estimated costs from the health care system perspective in 2020 US dollars, deaths averted, and the incremental cost-effectiveness ratios of each scenario. RESULTS: Remdesivir for nonventilated patients and dexamethasone for ventilated patients was estimated to result in 408 (uncertainty range, 229-1891) deaths averted (assuming no efficacy [uncertainty range, 0%-70%] of remdesivir) compared with standard care and to save $15 million. This result was driven by the efficacy of dexamethasone and the reduction of ICU-time required for patients treated with remdesivir. The scenario of dexamethasone alone for nonventilated and ventilated patients requires an additional $159 000 and averts 689 [uncertainty range, 330-1118] deaths, resulting in $231 per death averted, relative to standard care. CONCLUSIONS: The use of remdesivir for nonventilated patients and dexamethasone for ventilated patients is likely to be cost-saving compared with standard care by reducing ICU days. Further efforts to improve recovery time with remdesivir and dexamethasone in ICUs could save lives and costs in South Africa.

16.
medRxiv ; 2020 Sep 27.
Article in English | MEDLINE | ID: covidwho-807378

ABSTRACT

Background South Africa recently experienced a first peak in COVID-19 cases and mortality. Dexamethasone and remdesivir both have the potential to reduce COVID-related mortality, but their cost-effectiveness in a resource-limited setting with scant intensive care resources is unknown. Methods We projected intensive care unit (ICU) needs and capacity from August 2020 to January 2021 using the South African National COVID-19 Epi Model. We assessed cost-effectiveness of 1) administration of dexamethasone to ventilated patients and remdesivir to non-ventilated patients, 2) dexamethasone alone to both non-ventilated and ventilated patients, 3) remdesivir to non-ventilated patients only, and 4) dexamethasone to ventilated patients only; all relative to a scenario of standard care. We estimated costs from the healthcare system perspective in 2020 USD, deaths averted, and the incremental cost effectiveness ratios of each scenario. Results Remdesivir for non-ventilated patients and dexamethasone for ventilated patients was estimated to result in 1,111 deaths averted (assuming a 0-30% efficacy of remdesivir) compared to standard care, and save $11.5 million. The result was driven by the efficacy of the drugs, and the reduction of ICU-time required for patients treated with remdesivir. The scenario of dexamethasone alone to ventilated and non-ventilated patients requires additional $159,000 and averts 1,146 deaths, resulting in $139 per death averted, relative to standard care. Conclusions The use of dexamethasone for ventilated and remdesivir for non-ventilated patients is likely to be cost-saving compared to standard care. Given the economic and health benefits of both drugs, efforts to ensure access to these medications is paramount.

SELECTION OF CITATIONS
SEARCH DETAIL